FAIRCHILD

FSHDMI04

Wide－bandwidth Differential Signaling HDMI Switch

General Description

The FSHDMIO4 is a wide bandwidth switch for routing HDMI Link Data and Clock signals．This device supports data rates up to 1.65 Gbps per channel for UXGA resolu－ tion．It can also be used to switch other LVDS or TMDS based DVI digital video signals as well as 1000－BaseT Gigabit Ethernet．Possible applications include LCD TV， DVD，Set－Top Box，notebook computers and other designs with multiple digital video interfaces．The FSHDMIO4 switch allows the passage of HDMI link sig－ nals with low non－adjacent channel crosstalk and supe－ rior OFF－Isolation．This performance is critical to minimize ghost images between active video sources in video applications．The wide bandwidth of this switch allows the high speed differential signal to pass through the switch with minimal additive skew and phase jitter．

Features

－1．65 Gbps Throughput
－8kV ESD Protection
■－ 25 dB non－adjacent channel crosstalk at 825 MHz
－Isolation ground between channels
－Low skew
－Inter－pair skew＜150ps
－Inter－pair skew＜90ps
－Fast turn on／off time
■ Low power consumption（ $1 \mu \mathrm{~A}$ max）
■ Control input：TTL compatible
■ Available in 48－lead QVSOP package

Applications

■ UXGA and 1080p DVI and HDMI video source selection

Ordering Information

Order Number	Package Number	Package Description
FSHDMIO4QSPX	MQA48A	48－Lead Quarter Size Very Small Outline Package（QVSOP），JEDEC MO－154， $0.150 "$ Wide

Application Diagram

Pin Assignments

Truth Table

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	H	Disconnected
L	L	$1 C_{n}=C_{n}$
H	L	$2 C_{n}=C_{n}$

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}$	Bus Switch Enable
S	Select Input
$1 \mathrm{C}_{\mathrm{n}}, 2 \mathrm{C}_{\mathrm{n}}, \mathrm{C0} 0_{\mathrm{n}}, \mathrm{C} 1_{\mathrm{n}}, \mathrm{C} 2_{\mathrm{n}}, \mathrm{C} 3_{\mathrm{n}}$	Data Ports

Absolute Maximum Ratings

(The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.)

Symbol	Parameter	Rating
V_{CC}	Supple Voltage	-0.5 V to +4.6 V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.05$
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage ${ }^{1}$	-0.5 V to +4.6 V
$I_{\text {IK }}$	DC Input Diode Current	-50 mA
$\mathrm{I}_{\text {OUT }}$	DC Output Sink Current	128 mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	ESD, Human Body Model	$8,000 \mathrm{~V}$

Recommended Operating Conditions ${ }^{2}$

Symbol	Parameter	Rating
V_{CC}	Power Supply Operating	3.0 V to 3.6 V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage	0 V to V_{CC}
	Switch Input Voltage	0 V to V_{CC}
	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

DC Electrical Characteristics

(All typical values are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
				Min	Typ	Max	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	3.0			-1.2	V
$\mathrm{V}_{\text {IH }}$	Input Voltage HIGH		3.0-3.6	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW		3.0-3.6			0.8	V
I_{IN}	Control Input Leakage	$\mathrm{V}_{\text {IN }}=0$ to V_{CC}	3.6			± 1.0	$\mu \mathrm{A}$
I_{Oz}	OFF-STATE Leakage	$0 \leq \mathrm{nC}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}} \leq \mathrm{V}_{\mathrm{CC}}$	3.6			± 1.0	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.6 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \end{aligned}$	3.0		12.0	19.0	Ω
$\mathrm{R}_{\text {ON(FLAT) }}$	Switch On Resistance Flatness ${ }^{4}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.6 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \end{aligned}$	3.0		1.0		Ω
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0$ or V_{CC}, $\mathrm{I}_{\text {OUT }}=0$	3.6			1.0	$\mu \mathrm{A}$

Notes:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
2. Unused control inputs must be held HIGH or LOW. They may not float.
3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.
4. Flatness is defined as the difference between the maximum and minimum value On Resistance over the specified range of conditions.

AC Electrical Characteristics

(All typical values are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ unless otherwise specified))

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			Units	Figure Number
				Min	Typ	Max		
ton	Turn ON Time S, OE-to-Output	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.5, \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		4.0	6.0	ns	Figure 5 Figure 6
toff	Turn OFF Time S, OE-to-Output	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.5, \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		2.0	4.0	ns	Figure 5 Figure 6
$t_{\text {BBM }}$	Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.5, \\ & \mathrm{R}_{\mathrm{PU}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \hline \end{aligned}$	3.0 to 3.6		3.0			Figure 12
$\begin{aligned} & \mathrm{t}_{\mathrm{PD}} \\ & \left(\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}\right) \end{aligned}$	Switch Propagation Delay	$\mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.0 to 3.6			250	ps	Figure 5 Figure 11
TJITTER	Total Jitter (DJ + RJ)	$\mathrm{f}=165 \mathrm{MHz}$ Clock with 50\% Duty Cycle, RPU $=50 \Omega$, CL $=5 \mathrm{pF}$	3.0 to 3.6		55.0		ps	Figure 5
$\mathrm{T}_{\text {RATIO }}$	Duty Cycle Ratio				50.0		\%	
$\mathrm{T}_{\text {SK1 }}$	Intra-Pair Skew $\mathrm{C}_{\mathrm{n}}+$ to $\mathrm{C}_{\mathrm{n}}{ }^{-5}$	$\begin{aligned} & \mathrm{f}=1.65 \mathrm{Gbps}, 2^{23}-1 \mathrm{PRBS} \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		55.0	90.0	ps	Figure 5 Figure 11
TSK2	Inter-Pair Skew ${ }^{5}$ (Between any two switch paths)	$\begin{aligned} & \mathrm{f}=1.65 \mathrm{Gbps}, 2^{23}-1 \mathrm{PRBS} \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		90.0	150	ps	Figure 5 Figure 11
$\mathrm{O}_{\text {IRR }}$	OFF-Isolation	$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=370 \mathrm{MHz}$	3.0 to 3.6		-35.0		dB	Figure 7
		$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=825 \mathrm{MHz}$	3.0 to 3.6		-25.0			
Xtalk	Non-Adjacent Channel Crosstalk	$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=370 \mathrm{MHz}$	3.0 to 3.6		-30.0		dB	Figure 8
		$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=825 \mathrm{MHz}$	3.0 to 3.6		-25.0			
$\mathrm{f}_{\text {MAX }}$	Maximum Throughput		3.3		1.65		Gbps	

Notes:
5. Guaranteed by characteristics and design.

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
			Min	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		1.1		pF
$\mathrm{C}_{\text {ON }}$	nC_{n} ON Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		6.0		pF
$\mathrm{C}_{\text {OFF }}$	Port C_{n} OFF Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		2.5		pF

Typical Characteristics

Figure 1. Off-Isolation, $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$

Figure 2. Crosstalk, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Test Diagrams

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{ON}} / \mathrm{I}_{\mathrm{ON}}$
Figure 3. On Resistance

Each switch port is tested separately.
Figure 4. OFF Leakage
$R_{P U}$ and C_{L} are functions of application environment (see $A C / D C$ Tables for values of C_{L} and $R_{P U}$) ${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes fixture and stray capacitance

Figure 5.

Figure 6. Turn ON / Turn OFF Waveforms

R_{S} and R_{T} are functions of the application environment (see AC/DC Tables for values of R_{T})

OFF-Isolation $=20 \log \left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}\right)$
Figure 7. Channel OFF-Isolation

Figure 8. Non-adjacent Channel-to-Channel Crosstalk

Figure 9. Channel OFF-Capacitance

Figure 10. Channel ON-Capacitance

Figure 11. Intra and Inter Pair Skew, $\mathrm{t}_{\text {PD }}$

Figure 12. Break-Before-Make

Physical Dimensions inches (millimeters) unless otherwise noted

MQA48AREVA

48-Lead Quarter Size Very Small Outline Package (QVSOP), JEDEC MO-154, 0.150" Wide Package Number MQA48A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	FAST ${ }^{\text {® }}$	ISOPLANAR $^{\text {™ }}$	PowerSaver ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-6
ActiveArray ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	LittleFET ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8
Bottomless ${ }^{\text {TM }}$	FPS ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	QFET ${ }^{\circledR}$	SyncFETTM
Build it Now ${ }^{\text {TM }}$	FRFET ${ }^{\text {TM }}$	MicroFET ${ }^{\text {M }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{\circledR}$
CoolFETM	GlobalOptoisolator ${ }^{\text {TM }}$	MicroPak ${ }^{\text {™ }}$	QT Optoelectronics ${ }^{\text {TM }}$	TINYOPTOT
CROSSVOLT ${ }^{\text {m }}$	GTO ${ }^{\text {¹ }}$	MICROWIRE ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
DOME ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {² }}$	MSX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
EcoSPARK ${ }^{\text {™ }}$	$\mathrm{I}^{2} \mathrm{C}^{\text {™ }}$	MSXPro ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	UltraFET ${ }^{\circledR}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	$i-L o^{\text {TM }}$	OCX ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
EnSigna ${ }^{\text {TM }}$	ImpliedDisconnect ${ }^{\text {™ }}$	OCXPro ${ }^{\text {™ }}$	ScalarPump ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
FACT ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$	SILENT SWITCHER ${ }^{\circledR}$	Wire ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {TM }}$		OPTOPLANAR ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	
		PACMAN ${ }^{\text {TM }}$	SPM ${ }^{\text {™ }}$	
Across the board. Around the world. ${ }^{\text {TM }}$ The Power Franchise ${ }^{\circledR}$		POPTM	Stealth ${ }^{\text {TM }}$	
Programmable Active Droop ${ }^{\text {TM }}$		Power247 ${ }^{\text {™ }}$ PowerEdge ${ }^{\text {TM }}$	SuperFETTM SuperSOTTM-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHTTO MAKE CHANGES WITHOUT FURTHER NOTICE TOANY PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUME ANY LIABILITY ARISING OUT OF THEAPPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILDíS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

